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In the first two installments of this series, various cloud models were studied with angularly discrefized versions 
of radiative transfer. This simplification allows the effects of cloud inhomogeneity to be studied in some detail. 
The families of scattering media investigated were those whose members are related to each other by scale 
changing operations that involve only ratios of their sizes ("scaling" geometries). In part 1 it was argued that, 
in the case of conservative scattering, the reflection and transmission coefficients of these families should vary 
algebraically with cloud size in the asymptotically thick regime, thus allowing us to define scaling exponents 
and corresponding "universality" classes. In part 2 this was further justified (by using analytical 
renormalization methods) for homogeneous clouds in one, two, and three spatial dimensions (i.e., slabs, 
squares, or triangles and cubes, respectively) as well as for a simple deterministic fractal cloud. Here the same 
systems are studied numerically. The results confirm (1) that renormalization is qualitatively correct (while 
quantitatively poor), and (2) more importantly, they support the conjecture that the universality classes of 
discrete and continuous angle radiative transfer are generally identical. Additional numerical results are obtained 
for a simple class of scale invariant (fracml) clouds that arises when modeling the concentration of cloud liquid 
water into ever smaller regions by advection in turbulent cascades. These so-called random "[1 models" are (also) 
characterized by a single fractal dimension. Both open and cyclical horizontal boundary conditions are 
considered. These and previous results are contrasted with plane-parallel predictions, and measures of 
systematic error are defined as "packing factors" which are found to diverge algebraically with average optical 
thickness and are significant even when the scaling behavior is very limited in range. Several meteorological 
consequences, especially concerning the "albedo paradox" and global climate models, are discussed, and future 
directions of investigation are outlined. Throughout this series it is shown that spatial variability of the 
optical density field (i.e., cloud geometry) determines the exponent of optical thickness (hence universality 
class), whereas changes in phase function can only affect the mulfiplicative prefactors. It is therefore argued 
that much more emphasis should be placed on modeling spatial inhomogeneity and investigating its radiative 
signature, even if this implies crude treatment of the angular aspect of the radiative transfer problem. 

1. INTRODUCTION 

1.1. Radiative Transfer in Inhomogeneous Media 

A basic problem in meteorology, climatology, and remote 
sensing is to relate the highly variable properties of such 
geophysical fields as cloud or rain with the properties of their 
radiation fields at various wavelengths. If a distribution of 
scatterers is specified, and the sources of illumination given, the 
radiation field generated after multiple scattering can in principle 
be determined; the inverse is not possible in general. Most 
attempts to relate these fields have therefore proceeded by 
specifying some distribution of cloud scatterers (i.e. liquid water 
content with some droplet size distribution) and then computing 
the radiation fields, typically using Mie theory locally and Monte 
Carlo techniques globally. 

For some time the term "inhomogeneous" atmosphere in the 
radiative transfer literature was synonymous with a vertically 
stratified system of atmospheric layers which can be described 
within the context of plane-parallel geometry; see Lenoble 
[1977] for an extensive review. There is no doubt that 

stratification is present in the atmosphere, but ignoring horizontal 
variability is a very extreme assumption: if applicable, the 
variability of satellite imagery would only be due to spatial 
distribution of surface albedo. This simple fact has created the 
need to better understand "mutidimensional" radiative transfer, a 
term to which we prefer "horizontally inhomogeneous" for 
reasons that will soon become clear. Incidentally, 
inhomogeneous ground reflectance is sufficient to create 
horizontal gradients everywhere in the radiation field; Malkevich 
[1960], Diner and Martonchik [1984a,b], TanrE et al. [1981, 
1987], and others approach this important problem in various 
ways. 

Returning to clouds, the prime source of variability of 
atmospheric radiation, there as been a sustained interest in 
treating even simple geometrical shapes (e.g., cubes, cylinders, 
spheres) with various methods while maintaining internal 
homogeneity; see for example, Busygin et al. [1973], McKee 
and Cox [1974], Davies [1976, 1978], Barkstrom and Arduini 
[1977], CogIcy [1981], Welch and Zdunkowski [1981a], 
Preisendorfer and Stephens [1984], and Stephens and 
Preisendorfer [1984]. Developments by Avaste and Vaynik•o 
[1974], Busygin et al. [1977],Aida [1977], Glazov and Titov 
[ 1979], Titov [ 1979, 1980], Davies [1984], and others consisted 

1 in arranging these homogeneous clouds into periodic or 
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[1979] and Welch [1983] have adopted a deterministic approach 
whereas Welch et al. [1980], Gabriel et al. [1986], Stephens 
[1988b] and Cahalan [1989] have treated media involving 
random optical density fields. This is to be contrasted with the 
idea of ensemble-averaging of the (nonlinear) radiative responses 
associated with simple homogeneous cloud geometries in an 
attempt to model the effect of spatial variability [Mullaarna et al., 
1975; Ronnholm et al., 1980; Welch and Zdunkowski, 
1981b,c]. See also Davis et al 1990, Lovejoy et al 1990 for 
calculations of scaling exponents characterizing the ensemble 
properties of multifractal clouds. 

It should be mentioned that many of the cloud models 
discussed above were optically quite thin: (1-g)x, which is a 
measure of nonlinearity in the radiative response, was in the 
range 1 to 10; g and x designate as usual the asymmetry factor 
and optical thickness respectively. They almost always had quite 
modest inhomogeneities, limited to a very narrow range of 
scales. Not surprisingly, only small (but systematic) changes in 
the albedo were found in comparison with completely 
homogeneous plane-parallel clouds. It will be shown further on 
that arbitrarily large effects are achieved by thick enough clouds 
that merely lose light through their sides; it will also be seen that 
quite thin (x=50, 1-g--0.85) clouds yield large differences with 
respect to plane-parallel predictions if enough internal 
inhomogeneity is present even when the range of scales is limited 
to a factor of 32. 

This succinct review is only concerned with the problem of 
multiple scattering with (usually collimated) external illumination. 
For completeness, we should mention the work of several 
geophysicists and many astrophysicists concerned with the 
effects of spatial variability (in more than one direction) of 
internal (thermal) sources for continuum or coherent transfer 
[Harshvardan et al., 1981; Stephens and Preisendorfer, 1984; 
Stephens, 1986] as well as of the frequency redistribution 
function for (incoherent) spectral line transfer [Jones and 
Skumanich, 1980]. 

1.2. Need for Fractal Cloud Models 

There are many theoretical reasons, as well as considerable 
empirical evidence, supporting the idea that over wide ranges in 
scale, the statistical properties of clouds are invariant under a 
scale changing operation. Scale invariant (scaling) systems are 
associated with power law behaviour and complex fractal 
structures since over the corresponding range, the system has no 
characteristic size. Theoretically, we expect atmospheric fields 
including clouds to be scaling since the governing dynamical 
equations have no characteristic length between the outer 
(planetary) scale and the inner (viscous) scale of order one 
millimeter. Furthermore, the radiative transfer equation contains 
no intrinsic scale either. Below, we shall consider 
observationally based motivations. 

Empirical (aircraft) energy spectra of cloud liquid water content 
(such as the power law energy spectra obtained by King et al. 
[1981]) are scaling (or scale invariant) in form, and broadly 
support the idea that at least over wide ranges in scale that clouds 
are fractal [Lovejoy, 1982; Rhys and Waldvogel, 1986; Kuo et 
al., 1988; Welch et al., 1988a,b; Yano and Takeuchi, 1990; 
Cahalan and Joseph, 1989]. For reviews, see Lovejoy and 
Schertzer [1986], Schertzer and Lovejoy [1988, 1990] and 
Cahalan [1989]. There have been some reports of scale 
breaking, but these may well be due to the use of monofractal 
rather than multifractal analysis techniques combined with use of 
a very small number of samples; see Lovejoy and Schertzer 
[1990a] for a discussion of this difference as well as a critical 
teevaluation of previous analyses. In any case, systematic 
studies of scaling and its limits in the atmosphere still have not 
been undertaken and the basic issues are still open. 

At the very least, cloud scaling is complex. In this regard, 

Gabriel et al. [1988] analyzed several infrared and visible 
radiation fields captured by GOES, over ranges from 8 to 512 
km; they found that the intense and weak regions have different 
scaling exponents (i.e. clouds are "multifractal"). Schertzer and 
Lovejoy [1987a,b] show theoretically that under fairly general 
circumstances the entire multifractal spectrum or (co)dimension 
function, can itself be characterized by three parameters which 
define multifractal "universality classes". Unlike fractal 
dimensions which provide purely geometric characterizations of 
sets, these parameters characterize the dynamical generator of the 
process. Lovejoy and Schertzer [1990b] refine the analysis of 
Gabriel et al. [1988] and estimate the three parameters for 
infrared and visible cloud/surface intensities. A further 
complexity in the scaling is empirically discussed in Lovejoy et 
al. [ 1987] (in radar rain fields) showing that the appropriate scale 
changing operator is not simply a zoom (self-similarity), but 
involves stratification as well (and a new "elliptical dimension"); 
Schertzer and Lovejoy [1983, 1985a] argue that it also involves 
differential rotation due to the Coriolis force and associated with 
cloud "texture". Multiple scaling and anisotropy are thus likely 
to be fundamental ingredients of realistic cloud models. 
1.3. Overview 

In the following section, most of the simple homogeneous and 
fractal clouds discussed in part 2 [Gabriel et al., this issue] are 
studied numerically in both discrete angle (DA) and continuous 
angle radiative transfer following the guide-lines prescribed in 
part 1 [Lovejoy et al., this issue]. More precisely, we exploit 
systematically the scaling ansatz in the asymptotic regime (we 
obtain quantitative estimates of various scaling exponents) as 
well as the exact DA similarity relations (only isotropic scattering 
is needed) and, most importantly, we give preference to Monte 
Carlo over diffusion methods. We then def'me a "packing factor" 
(•) as the ratio of optical thicknesses of fractal and/or 
(horizontally) finite clouds to that of their plane-parallel 
counterparts with identical albedoes; the basic results can be 
summarized by • -- x õ where õ > 0 is the "packing exponent". 
In section 4, we numerically examine random monofractal "[5 
model" clouds, showing that they too have reflected fields with 
considerably lower (average) albedoes than the corresponding 
plane-parallel layers. 

We then outline the implications of our findings for the 
interpretation of satellite images, radiation budget and climate 
models as well as the "cloud albedo paradox", among several 
other possible fields of application. We then discuss possible 
improvements such as the use of more realistic fractal models, 
including the effect of statification (without leaving a scaling 
framework). Finally, we argue that most research into 
atmospheric radiative transfer has attributed too much importance 
to the subtleties of the angular distribution of intensity patterns 
due to ever more realistic phase functions exiting unrealistically 
homogeneous cloud layers. While DA systems may be crude as 
far as their treatment of interaction between intensities in different 
directions, their spatial variability can be much more realistic and 
interesting than in the usual plane-parallel systems. In any case, 
the universality conjecture (shown to hold here in most systems), 
means that for many thick cloud properties, the limitations of DA 
transfer due to its simplified coupling of intensities in direction 
space, will be secondary. 

2. MONTE CARLO STUDIES OF RADIATIVE TRANSFER IN SCALING 
CLOUDS 

2.1. Review and Statement of Objectives 

Throughout this series of papers our objective as been to 
investigate the radiative behavior of certain simple examples of 
"scaling" clouds, i.e., those in which features at small and large 
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scales are related by a scale changing operation that only depends 
on scale ratios, not absolute sizes. In these systems, the albedo 
(R) and transmittance (T) are nondimensional scaling functions 
of the optical thickness as the latter tends to infinity. This arises 
because the only characteristic (optical) length scale based on the 
scattering/absorbing process itself (the "diffusion 
length" -- [(1-•o)(1-•og)] -1/2, where •o is the 
single-scattering albedo) diverges when scattering becomes 
conservative (•o--> 1); hence the radiative properties of the 
system depend only on the dimensionless optical thickness. 
When the latter becomes much greater than one, the only critical 
value for a naturally defined nondimensional parameter, we 
expect the following algebraic (rather than exponential) 
behaviour: 

T- 7'* •..h•p)x-v? (la) 
R* - R 

where Pik is the DA phase function for scattering from directions 
i into k; as customary, the matrix P is only considered to be a 
function of of the scalar product i.k. This constraint allowed us 
to enumerate exhaustively the acceptable DA systems which can 
be unambiguously designated with the following notation: 
DA(d,n), where d=1,2,3 is the dimension of the 
embedding space and n the number of beams. As indicated in 
(la)-(lb) and in accord with the exact DA(d, 2d) similarity 
relations obtained in part 1 for orthogonal systems, h r and h a are 
P dependent prefactors whereas vr and va are P independent 
(i.e., universal) scaling exponents; signs are chosen to make all 
these parameters positive. Alternatively, (la) and (lb) can be 
viewed as two-term asymptotic expansions of the radiative 
response functions as x-->oo. 

Since the DA phase functions are special cases of the general 
continuous angle phase Iunctions, it is natural to conjecture that if 
universal continuous angle exponents exist, they should equal the 
DA exponents. This conjecture is all the more plausible given 
that the universal result for plane-parallel geometry va = vr= 1 
(independent of phase function) is already well established in the 
radiative transfer literature; in the non-plane-parallel cases 
studied numerically here, it is also seems to be generally true. It 
should be clear, however, that the boundary conditions are 
important in determining the universality class. In DA(d, 2d) 
systems and fixed boundary conditions, we showed in part 1 that 
(for d > 1) the universality classes can be defined by the sign of 
pq where q and p are simply related to the first and second 
Legendre coefficients of the DA phase function (the zeroth 
coefficient, •o, being in this conservative case unitary). For 
physically interesting phase functions, we have 2 > q > p > 0. 

In part 2, we approached the scaling relations (la) and (lb) 
from the point of view of renormalization. According to this 
picture, these arise because near the thick cloud fixed point 
[R*,T*] = [R(oo),T(oo)], the nonlinear map 
[R(x),T(x)]-->[R(2x),T(2x)] can be approximated linearly by a 
matrix whose coefficients are independent of the DA phase 
function. Because the largest eigenvalue of this matrix is strictly 
less than unity, repeated multiplication of the matrix 
(corresponding to approaching the fixed point in a small 
neighbourhood) reduces the magnitude of errors as well as 
differences due to various initial phase function choices; the 
exponents va. and vt. are therefore universal (in this case, in the 
precise sense of nonlinear systems theory). The "-" signs are 
used to remind us that renormalization converges onto the 
universality class corresponding to pq < 0 and unphysical 
(negatively valued) phase functions. Before reaching the thick 
cloud regime by iteration of the map, appreciable absolute 
differences in transmission or reflection coefficients can build up 
because of the instability of the thin cloud fixed point which 

initially amplifies such differences; the prefactors ha., hr. will 
therefore depend on the phase functions. Indeed they will 
depend primarily on (l-g) according to the approximate 
renormalization approach applied to the linear (thin cloud) 
regime; the exact DA(d, 2d) similarity relations of part 1 dictate 
a dependence on q/p. 

2.2. Horizontally Finite Homogeneous Clouds in Two and 
Three Dimensions 

Because we were only interested in total fluxes through 
external cloud boundaries, and not in the internal radiation fields, 
standard Monte Carlo methods are sufficiently accurate and 
efficient. Although alternative methods, such as numerically 
solving the spatially discretized DA equations (cf. appendix) 
...... 8- ha-'e the -'•-"• "• -' '-•' ,•,,- n a ;,,,,-,,o;•, •,.•,•o .... an,,,g,., .,. giving 
everywhere, they involve large grids when the thick cloud limit is 
required, since the elementary cell optical thickness ('Co) must be 
((1 everywhere (see section 3.2 and Appendix A of part 1). 
Approaches based on the d-dimensional diffusion equation 
should be avoided, as it is likely to be a poor approximation to 
the radiative transfer equation in general, i.e. when gradients in 
optical density are everywhere important; worse, it will generally 
have different universality classes, as shown in part 1 in analogy 
with the problem of phase transitions in percolating 
con ductor/superconductor mixtures. 

We therefore performed simulations in two dimensions on a 
square cloud with sides varying from 1/8 up to 512 (in optical 
units). Two extreme examples of isotropic conservative 
scattering were used: continuous angle (with normal injection) 
and the orthogonal DA equivalent (i.e., the DA(2, 4) system 
with t = r = s = 1/4). In both cases, the standard 
(exponential) photon free path distribution was employed; this 
means that, unlike the calculations presented in part 2, no cell 
structure is needed. In the DA case, we have therefore 
numerically solved 

[Ayl,•y + Az•] l=- (1-P) l (2a) 
where distances are measured in optical units •.e., we take 
•:p = 1), the (formal) vector l(y,z) = (l+yJ_yJ+•J_O • contains 
the four beam intensities (the superscript "T" designating matrix 
transposition), and 

1 000 

00 
00 

[000 0 t r 
[0000 rtss Az =/O 01 0 P = (2b) ss tr 

[,000-1 ssr t 

cf. part 1, section 3.3. The boundary conditions are 
l+y(0,z) = l_y(x,z) = l_•(y,x)= 0 and I+,.(y,x)= 1 for 
0 < y, z < x. In the continuous angle case, the corresponding 
problem is described by 

lp(0,,.),,.(x)a0,,. } (3) 
0 

where cos O ss'= s.s' and Is(x_) is the two-dimensional 
intensity at x = (y,z) in direction s; for conservative and 
isotropic scattering, we simply put p(Oss')=l/2m The boundary 
conditions are ls(O,z) = ls(x,z) = ls(y,x)= 0 and 
Is(y,x) = õ(s+n) for 0 _< y, z< x and s'n < 0, where n is 
the outgoing normal of the cloud's boundary. Notice the 
one-to-one correspondance of terms in (2a) and (3). Albedo 
(F = R) and transmittance (F = T) are defined by 
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for z = 0, 'c respectively; of course, no angular integration is 
needed in the DA formulation. Results are presented in Figure 
1 a: as predicted in parts 1 and 2, both transmittance curves are 
well described by v r= 1 and all the reflectance data are 
compatible with vR= 3/4 for large values of 'c. This supports 
the existence of broad universality classes; for other continuous 
angle phase functions with forward peaks in d = 2, see Davis et 
al. [19891. 

Figure lb shows three-dimensional Monte Carlo results from 
Davies [1976] and Gabriel [1988], using an isotropic and a more 
realistic (Diermenjian C1 drop size distribution at 0.45 

lo 5 

.e 

'• •o 4 

1,o 3 

1C 2 
1 lO lOO 

Isotropic Scattering 
Normal Incidence 

lOOO 

optical thickness of square medium 

Fig. la. Tx105 or (1-R)x105 versus x for isotropic (g = 0) 
scattering in continuous angle and DA(2, 4), obtained by Monte Carlo 
simulation on normally illuminated squares. The reference lines show 
the asymptotic slopes v = 3/4 and v = 1 Here and in Figures 3a- 
3c, the •nmns•c uncertmnues of the method can be estimated as the 
square root of the ordinate. 
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rescaled optical thickness of cube, (l.g)*tau 

Fig. lb. T or (l-R) versus (1-g)x for anisotropic (Deirmenjian C1 
drop size distribution, g •0.85) and isotropic scattering in 
continuous angie or DA(3, 6), obtained 6bY Monte Carlo simulation on normally illuminated cubes with 10 photons (except for DA, 
where 10• histories were used). 

yielding g=0.85) phase function as well as new results using an 
isotropic six-beam DA phase function, i.e. the DA(3, 6) system 
with boundary conditions and definitions (4) above appropriately 
extended. It is notable that 1-R and T obey approximately 
universal functions of (1-g)'c over the whole range from thin to 
thick regimes; this is also the case in d = 2 as mentioned by 
Davis et al. [ 1989]. The same conclusion about universality as in 
d = 2 follows, and the absolute asymptotic slopes are again 
found to be vr= 1 and vR = 3/4. This last result shows that the 
exponents associated with physical pq > 0 and unphysical 
pq < 0 are different in different d-dimensional spaces, since in 
Part I1 we obtained VR- = 1/2 for DA(3, 6) and VR-= 3/4 for 
DA(2, 4). 

2.3. Fractal Clouds with Dimension D=Log3/Log2=l.58'" 

The deterministic fractal clouds studied in this subsection are 
the same natural extensions of the internally homogeneous cloud 
models that were introduced in part 2: rather than being 
homogeneous over a set with dimension equal to that in which 
the cloud is embedded they are "fractally homogeneous", i.e., 
homogeneous over a (fractal) set with dimension less than that of 
the embedding space. By construction, these clouds contain 
horizontal inhomogeneities (that have an equal vertical extension) 
on all scales, from the size of the unit cell to that of the complete 
cloud, whereas the internally homogeneous horizontally fireire 
clouds studied above present inhomogeneity at a very specific 
scale (i.e., the size of the cloud). Of course, such models are 
still too homogeneous to be realistic; multifractal measures 
(requiring an infinite number of dimensions for their 
specification) not monodimensional sets will undoubtedly be 
eventually necessary. It should be noted that following the 
convention in statistical physics, we have built the fractal clouds 
from an inner scale upwards to larger scales, whereas in 
turbulence (and multifractals in general), it is the small scale limit 
which is of primary interest and a different limiting procedure is 
appropriate (see Davis et al 1990, Lovejoy et al 1990 for more 
details). 

Figure 2 illustrates the first seven steps in the construction of 
the specific model used in the following; notice that the ntunber 
of cells increases as 3 n = (2n) D = (physical size) D where 
D = log 3/log 2 = 1.58--. is the fractal dimension of the 
cloud. In our Monte Carlo experiment, the only need for spatial 
discretization was to specify the distribution of scattering versus 
nonscattering elements, which are characterized by their optical 
thicknesses 'co(>0) and 0, respectively. Single (active) cell 
optical thickness % was chosen as 1/8, 1/2, or 2; up to 12 steps 
into the construction procedure illustrated in Figure 2 were used 
(i.e. the cloud is on a grid of up to 4096 x 4096 points). The 
(space-averaged) optical thickness after n steps is 'co(3/2) n, as 
can be seen directly or by setting 3. = 2 and C = d-D in (16) 
below. For simplicity, scattering is taken as isotropic either 
DA(2, 4) or continuous in direction space; fireally, 1 (P photons 
were injected normally from above; see Figure 2. The equations 
obeyed by these systems are similar to those given in the 
previous subsection with left-hand sides multiplied by •:p(x) 
equal to 'co times the indicator function of the set depicted in 
Figure 2 (if distances would then be measured in units of cell 
size). 

Figure 3a shows the results of such calculations for the 
transmission law, the parameters in (la) are found to be T* = 0, 
vr = 0.51 (using the data for 'Co = 2). However Figures 3b 
and 3c corresponding to reflection show R* -- 1/2, its precise 
value must be estimated numerically along with VR. The value 
T* = 0 can be understood quite easily since in thicker and 
thicker clouds, typical photons (that do not fall on a portion of 
cloud that is--'co thick) must traverse increasingly large optical 
distances in order to exit from the bottom of the cloud. 
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Fig. 2. Deterministic monofractal used as prototypical medium 
permeated by holes of all sizes, N successive steps into the 
construction procedure can be visualized above the horizontal lines 
designated by N (for 0 < N < 7). For the purpose of all radiative 
transfer calculations presented here, illumination is from the top. 
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Fig. 3a. Transmittance versus spatially averaged optical thickness for 
the D = 1.58-.., d = 2 cloud using continuous angle and DA(2, 4) 
Monte Carlo. The data points correspond to 0 through 12 
construction steps, respectively lxl to 4096x4096 grid points; three 
different cell optical thicknesses were used (1/8, 1/2, 2). The 
absolute slope for the most opaque cells is vr= 0.51. Corresponding 
transmittance curves are also shown for homogeneous squares (which 
yield vr = 1.00..- and somewhat different prefactors for either phase 
function). 

1o $ 

lO 4, 

However, in the case of the albedo, most of the photons will be 
reflected after following only relatively short optical paths, even 
in very thick clouds. Furthermore, the cloud possesses a 
symmetry axis (at 45 ø , from the vertical from lower left to upper 
right comers in Figure 2), which combined with the isotropic 
phase functions used here, this ensures that roughly half of the 
(vertically incident) photons will escape from the top and half 
from the right-hand side of the cloud (if it is very thick). By the 
same token, we see that if the cloud were rotated 45 ø counter 
clockwise in Figure 2, its R* would become 1; equivalently, 
rotate the angle of incidence 45 ø clockwise and define R as the 
flux contained in the semicircle within t-90 ø of the incident beam. 
Either way, we see that the boundary conditions (of illumination) '-• 
have an obvious influence on the thick cloud limit. In order to ';• 
determine the values of R* and vR, it is convenient to graph the 
f'mite derivative of the albedo with respect to the natural log of 
(space-averaged) optical thickness against the albedo itself, thus • •ø' 
avoiding a nonlinear three parameter fit. From (lb) one easily 
obtains 

AR R(x)-R(2x/3) (3/2) vR - 1 
Alnx - ln3/2 = [R*-R(x)] ln3/2 (5) 

Such a graph is shown in Figure 4; from the linear regression 
coefficients one obtains vn* = 0.46, and R* = 0.53, 0.54 in 
the continuous and DA cases, respectively. As for the 
transmittance data, the exponents obtained are the same (to within 
numerical precision) for either phase function, supporting the 
hypothesis that universality extends from DA to continuous angle 
phase functions. The same 0VIonte Carlo) methods were used by 
Davis et al. [1989] to study the same cloud but with cyclical 
boundary conditions (where T = l-R). They report a minor 
violation of universality of the scaling exponents, finding 
Vr* = 0.41 for continuous angle and Vr* = 0.50 for DA(2, 4) 
systems both normal and inclined in Figure 2. The violation is 

Isotropic Scattering (CA, with ...) • 
N 

................. , ...... : , rr•ite homo. •. 
.1 I 10 100 1000 

(space-averaged) optical thinness (when fractal) 

Fig. 3b. Same as Figure 3a but for reflectance (through the "top") in 
continuous angle radiative transfer. Notice that R* = 1 for the 
homogeneous squares and R* < 1 for their inhomogeneous 
counterparts. 

Isotropic Scattering (DA, hence ...) • : 

.1 I 10 10o 

(space-averaged) optical thickness (when fractal) 

1/8 
1/2 
2 

finrote homo. 
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Fig. 3c. Same as Figure 3b but for the DA(2, 4) system. 

minor because the DA(2, 6) system is in the same universality 
class as continuous angle radiative transfer. 

It is noteworthy that all the qualitatively correct predictions of 
the renormalization approach are retrieved in somewhat different 
guise: we have here vn(cyclic) = vr(cyclic) < I and the effect 
of opening the boundary conditions is again to decrease T (Vr 
goes from 0.41 to 0.51 for Xo = 2) and, to a greater extent, R 
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Fig. 4. Plotting technique described in text for the objective determination of R* and v R. Straight lines at right are linear 
regressions for continuous angle and DA results, yielding v R = 0.46 in both cases, whereas R* = 0.53 for continuous angle and 
R* = 0.54 for DA(2, 4). The slightly curved line at left corresponds to plane-parallel media in the two-flux approximation or 
(equivalently) the DA(1,2) model. 

although this happens via R* (which goes from 1 to --1/2) rather 
than VR (which actually increases from 0.41 to 0.50) whereas 
renormalization (part 2) simply predicts 
v R(open) < vR(cyclic) = Vr(cyclic) < v r(open) < 1. The 
failure of renormalization to predict a change in R* is traceable to 
the assumption that losses are identical on either side of a highly 
asymmetrical fractal. 

3. IMPLICATIONS FOR CLOUD - SOLAR RADIATION INTERACTION 

3.1. Quantitative Measures of the Effect of lnhomogeneity: 
Packing Factors and Absorptivity Ratios 

The results presented above indicate that due to the nonlinearity 
of the intensity with respect to the optical properties, the albedo 
of the fractal cloud approaches its thick limit much more slowly 
than in a uniform cloud since then vn(1)= 1 and 
vn(2) =vn(3)=3/4 for DA(d,2d) with d=1,2,3 or 
continuous angle. In order to quantify this effect we define a 
"packing factor", denoted •, as the ratio of the (spatially 
averaged) optical thickness of fractal and plane-parallel (i.e., one- 
dimensional) clouds with the same albedo. We can calculate it as 
follows. Recall that for the fractal, 

R'1.58 - R1.58 • hl.58Xl.58-VR (1'58) (6) 

while for the plane-parallel reference cloud, we have: 

l-R1 -- hlX1-1 (7) 

Taking Rl=R1.58 and defining • as Xl.58/Xl, we obtain 

• -- C•1.58 + Hx1.581-VR (1'58) (8) 

where G = (1-R*l.58)/hl and H = hl.58/hl will depend on the 
phase functions, unlike VR, which is >0 and <1. When open 
boundary conditions prevail, we have R'1.58 < 1, the 
asymptotic behavior of • will then be 

(9) 

However, for the fractal cloud with periodic boundary conditions 
(or illumination along the symmetry axis in Figure 2) as well as 
for the square and cubic geometries, we found 
R'1.58 = R*2 = R*3=l. We therefore obtain in this case 
(dropping subscripts): 

• o, x•-VR (10) 

In general, we may write 

(11) 
where x is the large optical thickness of the (fractal) cloud and 
õ > 0 is the packing exponent; clearly, • diverges with x, since 
õ > 0. The same is true for any horizontally finite cloud (such 
as a square or cubic cloud) in which v n(d) < 1 for d > 1 due to 
losses through the sides. We can also anticipate that •---> 1 + for 
x->O+; to see this return to the definition of • and notice that 
(say) in figure lb (for the cubic cloud) we have 
l-R1 = T1 < l-R3 (implying that R 1 = 1-Ti > R3) for all 
values of x. 

An equivalent way of comparing the horizontally finite or 
fractal clouds to their plane-parallel counterparts is to define the 
"absorptivity" as 1-R and calculate the ratio of these (apparent) 
absorptivities (1-R1.58)/(1-R1) for clouds with the same optical 
thicknesses. Again using the fractal cloud as an example, we 
obtain 

1-R 1.58 _ Gx + Hxl-VR(1.58) (12) l-R1 

the only difference with eq. (3.3) being that here we have 
ß = •1.58 = •1 (rather tha.n R1.58 = R1); absorbtivity also 
diverges at least as fast as •l-VR(1.58) when x._>oo. 

We obtain similar results if the packing factors and absorption 
ratio are redef'med by replacing the reference plane-parallel cloud 
by a reference square (even cubic) cloud, i.e., internally 
homogeneous but with losses through the sides: strictly positive 
packing exponents. Hence divergence of packing factors and 
absorptivities would still follow as a consequence of the presence 
of holes in horizontally extended clouds. This results from the 
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fact that vR(1) = 1 > vR(2)-- vn(3) > vn(1.58) and that x 
R*(1) = R*(2) = R*(3) =1 _> R*(1.58). • =Frrel• (13) Furthermore, the presence of internal inhomogeneities is ] 
sufficient (and apparently necessary) to cause divergence of the 
corresponding ratios based on transmitted fluxes. where F is one of the response functions (T or R) of optical 
This, in turn, c o m e s f r o m t h e f a c t t h a t thickness x (eventually space averaged) and Fref is the same 
vr(1) = Vr(2) = Vr(3) - 1 ) vr(1.58) and that 
T*(1) = T*(2) = T*(3) = T*(1.58) = 0. In the fractal cloud, 
this substantial increase in transmission could be thought of as a 
manifestation of the "channeling" of photons through regions of 
lesser optical density as described by Cannon [1970]. The same 
remark applies to internally homogeneous horizontally finite 
media where the photons are channeled toward the sides (which 
can be viewed as vertical interfaces with an optical vacuum). 

3.2. The Importance of Boundary Conditions 

In part 2 and section 2 above, we showed that leakage of light 
from the sides in two or three dimensions was sufficient to yield 
albedo exponents less than the corresponding plane-parallel 
values, yielding 15 > 0. As expected, the effect of internal 
inhomogeneities discussed in connection with the 
1.58 .... dimensional cloud leads to a much stronger divergence 
when compared with plane-parallel media; even using the 
homogeneous square media as benchmark yields 15 > 0. 
Another way of isolating the effect of inhomogeneity alone is to 
consider systems which are periodic in the horizontal direction 
(cyclic boundary conditions). 

From the results of part 2, we can see that the effect of 
imposing cyclic boundary conditions on the fractal medium has 
been to increase the albedo exponent and to decrease the 
transmission exponent. The Monte Carlo results from subsection 
2.2 above show that albedo is changed in the same direction but 
via R* (from --1/2 to 1) even though the corresponding exponent 
actually changes in the opposite direction (from 0.46 to 0.41). 
The transmittance is also boosted, this time, via a decrease in its 
scaling exponent (from 0.51 to 0.41). Since these values are all 
substantially below the plane-parallel values (R*= 1, 
v n= v r= 1), we again conclude that inhomogeneity is 
sufficient in itself to yield diverging packing factors by enhancing 
transmittance at the expense of reflectance. 

This is also the case in the homogeneous two- or 
three-dimensional (square or cubic) clouds, where imposing 
periodic boundary conditions would lead to plane-parallel 
geometry and results in identical reflection and transmission 
exponents equal to 1. This again calls for a substantial increase 
of vn (from 3/4 to 1) whereas transmittance is only increased 
through hr. We notice that renormalization methods remain 
qualitatively correct, predicting an increase in vR.. 

From the point of view of the total radiative response F, the 
parameters that influence the thick cloud values are primarily F* 
and then h F and v F. We see that albedo (F=R) always reacts 
"more" to any form of horizontal inhomogeneity (including 
finitehess) than transmittance (F=T). This can be understood by 
recalling that, due to highly asymmetric boundary (illumination) 
conditions, levels of (total) radiant energy are much higher near 
the top of a thick cloud than near its bottom because the 
contribution of low orders of scattering have the same up/down 
asymmetry. 

3.3. More on Packing Factors 

It was shown in the previous subsections that optical media 
with various geometries exhibit systematic differences in their 
radiative responses to external illumination when compared with 
plane-parallel clouds with equivalent optical thicknesses. The 
packing factor introduced to quantify this effect could be formally 
written 

optical response for some reference medium. In other words, 
Xeff = F r-•f{F] is the effective optical thickness needed to obtain 
a response F from the reference medium and • is the ratio X/Xeff. 
Notice that • is an unambiguous measure of the effect of 
geometry perturbation, since F and Fref are both monotonic. 
Furthermore, plane-parallel geometry provides a natural point of 
reference, since it is so widely used. 

We have seen that, for the various types of horizontal 
inhomogeniety considered, using plane-parallel theory as the 
benchmark yields •(x)>l for x>0. A consequence of this 

Oi 1• 11UlllU•liC, Ou,•/lJiane-iJo. i aiiui ui,..u,u 
of optical density is not average but extremal in the sense that it is 
undoubtably the most efficient way of reducing the flux of 
radiant energy as measured by (total) transmittance or, 
equivalently, exciting a diffusely reflected radiation field. This 
means that, except in very artificial (laboratory) situations, using 
plane-parallel theory to fit data gives a lower bound rather than an 
(unbiased) estimate of x. 

It is not hard to see that the nonlinearity of F with respect to x 
can be exploited to yield a nontrivial (>1) statistical analog of the 
"packing" of cloud mass (by inhomogeneity effects) if only the 
ensemble-averaged quantities are known. In analogy with 
definition (13), we write 

•s = (14) F-1 [<F(x)>] 

where angle brackets denotes ensemble averaging and again 
F = R,T or any other monotonic radiometric measure of x at 
given optical parameters (say, •o and g), geometry and 
illumination conditions. The main difference between the 
definitions of • and •s is that the former calls for two different 
functions of the same argument, whereas the latter uses the same 
one before and after ensemble averaging. This was carried out 
for simple plane-parallel geometry with truncated Gaussian 
[Mullaama et al., 1975] or lognormal [Ronnholrn et al., 1980] 
variability models for x, whereas Welch and Zdunkowski 
[1981b,c] use an exponential distribution of cylinders. Part of 
the motivation behind these studies is to simulate the effect of 
stochastic cloud fields, i.e., spatial variability, on observable 
cloud properties. This procedure is only justified in the case of 
extremely tenuous fields of horizontally finite clouds, in which 
case radiative interaction between clouds can be neglected. 
Above all, •s is not to be confused with <•>, obtained from 
(13), which is used to characterize the properties of the cloud 
models discussed in the following section and for which 
inhomogeneity is intrinsically stochastic. 

We have argued that there is no clear-cut difference between an 
extended inhomogeneous cloud and a cloud field. Realistic cloud 
models must therefore incorporate not only an element of 
stochasticity but a continuously tuneable parameterization for 
spatial correlations. The simplest possible random cloud model 
is (the spatial equivalent of) "white" (uncorrelated) noise [Welch 
et al., 1980], but by definition, it lacks the long-range clustering 
observed in real clouds. Multifractals (including monofractals as 
a special case) are naturally associated with "l/f' noise and 
correlation lengths equal to the outer scale of the variability field. 
A randomized version of our fractal model which, by 
construction, incorporates this feature is presented in the next 
section and applied to DA radiative transfer. 
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4. DA RAmATWE TRANSFER IN RANDOM FRACTAL CLOUDS 

4.1. Turbulent Cascades of Passive Scalar Clouds 

Up until now, we have studied cloud models that were 
geometrical rather than dynamical. So far most efforts at 
dynamic cloud/radiation modeling have been at (thermal) infrared 
wavelengths using statistical closure t•hniques [see Simonin et 
a/.,1981; Schertzer and Simonin, 1983; Coantic, 1978; and the 
astrophysical literature, starting with Spiegel , 1957]. The 
closure approach is limited primarily by its inability to properly 
handle intermittency (i.e. extreme variability). In the cloud 
radiation problem, this will be a serious shortcoming, since we 
have seen that even simple fractal intermittency leads to diverging 
packing factors. When applied to thick scattering atmospheres, 
the closure approach is further limited by the fact that unlike its 
thermal emission counterpart, the multiple-scattering source 
function is not dir•tly expressible in terms of a local temperature 
since the corresponding radiation field is extremely far from 
thermodynamic equilibrium [Essex, 1984]. Another approach is 
to use standard numerical modeling techniques for directly 
simulating all the dynamical fields and their interactions 
(including radiative) [e.g., Welch, 1983]. The difficulty here is 
that even the largest scale dynamical models (which have a factor 
of the order of only 100 in their range of scales) do not contain a 
sufficient range of scales to allow intermittency to build up 
significantly. Indeed, the basic process responsible for the 
concentration of energy, and other conserved fluxes into smaller 
and smaller regions of space, is the turbulent cascade, and the 
existing models do not have enough degrees of freedom to allow 
such cascades to develop. For instance, they do not display the 
exp•ted k -5/3 energy sp•tra for wind and passive scalar fields 
(k designates wave number). Existing models are dominated by 
energy inj•tion at large scales and dissipation at small scales, 
with insignificant intermediate "inertial" or cascade ranges. On 
the one hand, the empirical cloud densities are highly intermittent 
[Tsay and Jayaweera, 1984] and scale roughly as k -5/3 over 
several orders of magnitude [King et al., 1981]. On the other 
hand, we have shown that (in our deterministic models) it is 
pr•isely this scaling intermittency which leads to large radiative 
eff•ts (large packing factors). We will therefore use stochastic 
cascade models which are scaling by construction and are 
sp•ifically designed to produce strong intermittency. 

In hydrology, stochastic models of rain have been developed 
for some time (see, e.g., Waymire and Gupta [1981] for an early 
review, and the special issue of the Journal of Geophysical 
Research, volume 92(D8), for a r•ent survey). While some of 
these could be used for cloud modeling, we concentrate here on 
the subclass of fractal models. The simplest of these [Lovejoy 
and Mandelbrot, 1985] involves the addition of a large number of 
"pulses", but has the drawback that it lacks physical motivation 
and is characterized by a single fractal dimension. A much more 
physically based (multi)fractal model is the passive scalar 
turbulent model outlined by Schertzer and Lovejoy [1987a,b]. 
This model has the same symmetries (e.g. scaling) as the 
dynamical (partial differential) equations governing passive scalar 
advection in incompressible turbulence, as well as the same 
cascade phenomenology. 

The simplest special case (developed for modeling the 
nonlinear energy flux density œ = •v2/•t, where v is the wind 
velocity vector) is called the "[5 model" [Mandelbrot, 1974; 
Frisch et al., 1978] and, as pointed out by Schertzer and Lovejoy 
[1983], is the only case involving a single fi'actal dimension. As 
illustrated in Figure 5a and applied to passive scalar variance flux 
density (Z = •PZ/•t where p is the passive scalar density), the [• 
model creates a highly variable (intermittent) field by randomly 
concentrating the large scale flux density (schematically indicated 

in the figure by the large uniform square) into subregions 
modeling the nonlinear breakup of an eddy into subeddies. The 
quantities Z, œ are fundamental, since they are exactly conserved 
by the nonlinear terms in the equations governing passive scalar 
advection, and are thus expected to be scale invariant down to 
viscous scales (typically of the order of millimeters). 

ISOTROPIC 
='S'ELF SIMILARITY 

N(L)C L-• • 

T 

(L)CL s 
.--L/2--* 

T T L/2 C, f' L/2 

D= l og•4 log 3 _ 1 .58 log 2'= 2 D• log2 ' 
HOMOGENEOUS INHOMOGENEOUS 

(INTERMITTENT) 

Fig. 5a. A schematic representation of how turbulent cascades treat 
the breakup of a single eddy (represented by the central square) via 
nonlinear interactions during a single step of the cascade process. 
Both schemes shown here are isotropic; the left-hand side is 
homogeneous, and the fight hand side is an intermittent [5 model. 

Fig. 5b. An example of a canonical [5 model in d = 2 with a 4x4 
breakup per cascade step, showing the first four steps; black indicates 
the remaining "alive" regions. Fractal dimension is set at D = 1.73, 
i.e., at each step, each cell has a probability 4 -0.2 7= 0.688... of 
remaining alive where 0.27 = C = 2-D. 
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Fig. 5c. A perspective view of a three-dimensional I• model cloud 
with D = 2.6 (C = 0.4) on a 323 grid (i.e., five cascade steps with a 
dividing ratio of 2). 

scale limit, it implies flux conservation at each point; see 
Schertzer and Lovejoy [1990] for more details about these 
limitations. Cahalan• [1989] one-dimensional model uses a 
microcanonical cascade with • =2, •-C = 1/2 and 
•C/a = 1.3 (hence •-C/a' =0.7). In Davis et al 1990, 
Lovejoy et al 1990, we obtain exact results for direct 
transmittance for a family of microcanonical a models of which 
the 1.58 model above, and Cahalan's 1989 model are special 
cases. 

4.2. DA(3, 6) Radiative Transfer in fi Model Fractal Clouds 

The I• model described above was used to obtain cloud 
geometry, and the DA(3, 6) system on a cubic lattice was used 
to determine the resulting radiation field by an over-relaxation 
method of iteration (see the appendix). We used • = 2 and 

• ..... .• ....... •.,,,, a'•3 grid "'•';"•' .... ß , ........... •,•, L .... generating a .......... 
roughly the maximum possible with our computer resources (six 
intensities must be specified at each grid point). The single-cell 
transfer coefficients (T,R,S) were obtained through standard 
(continuous angle) Monte Carlo methods and phase functions 
corresponding to a Deirmendjian C1 drop size distribution (at 
0.45 gm wavelength, g = 0.85) for a cube of optical thickness 
'Co calculated in such way as to maintain the ensemble/space- 
averaged optical thickness constant throughout the experiment at 
<x> = 50. This mean optical thickness is given by 

<x> = Xo (•n) 1-C (16) 
Once the statistically stationary conserved quantities Z, œ are 

given, the fluctuations in density are described by the Corrsin- 
Obukhov scaling law: 

Ap -- œ-!/6 Z!/2 •xl/3 (15) 

where Ap is the (mean) difference in density between two points 
separated by a distance Ax. Various methods of numerically 
implementing this phenomenology are possible [Schertzer and 
Lovejoy, 1987b; Wilson et al., 1990]. Here, for simplicity, we 
model the optical density (p•:) directly as a cascade quantity, 
ignoring the additional scaling implied by the Ax 1/3 factor in 
(15). A binomial process rando, rely determines if a subeddy. is "alive" with probability •-C or dead" with probability 1-• -C. 
• > 1 is the scale ratio between successive steps of the cascade 
process, and C > 0 is the codimension with C = d-D, where d 
is the dimension of space in which the cascade occurs and D is 
the fractal dimension of the live regions; for instance, • = 2, 
d- 2 and D = log 3/log 2 in figure 5a. If the ed•dy is alive, 
the flux density is increased by a constant factor •c., such that 
the ensemble-averaged total (area integrated) flux is conserved. 
In the limit of a large number of cascade steps, the flux is almost 
surely everywhere zero except on a fractal set, with dimension D. 
The example in Figure 5b corresponds to • = 4, d = 2 and 
D = 1.73 (after three steps into the cascade), whereas Figure 5c 
shows a perspective illustration of the I• model embedded in a 
three-dimensional space such as those used below for the 
purpose of DA radiative transfer calculation. 

A slightly more general scheme, is the "a model" proposed by 
Schertzer and Lovejoy [1983]. The same binomial distribution is 
used but instead of being multiplied by •C or 0, the 
multiplicative increments are taken to be )•C/a > 1 or some 
other strictly positive constant )•-C/a' chosen so that <p•c> = 1 
(the 15 model is retrieved formally with a->l, a'-->0). In 
analogy with statistical mechanics, such models are said to be 
"canonical". An extremely restrictive variant is also possible: the 
"microcanonical" cascade in which energy (flux) is exactly 
conserved at each step. This is unphysical, since in the small 

For each value of the codimension C (=3-D), 10 realizations of 
the systems were used, each of which has a specific (space- 
averaged) optical thickness yielding a packing factor • by solving 
the plane-parallel reflection law for optical thickness, given the 
(space-averaged) albedo of the model; in short, (16) is 
ensembl-averaged. In Figure 6, the mean (and standard 
deviation) of • is plotted (logarithmically) against C, which 
varies from 0.1 to 0.8. This corresponds to an ensemble- and 
space-averaged cloud optical thickness to cell optical thickness 
ratio (<x>/Xo) varying from 22.625 to 2.00. In turn, this means 
that (1-g)Xo varies from 0.33 to 3.75, i.e., mainly in the linear 
(T=I) regime where spatially discretized and continuous DA 
calculations compare very well quantitatively. The packing factor 

10 • 

10 ø . . . , ß . 
0.0 0.2 0.4 C 0.6 0.8 1.0 

Fig_. 6. Numerical estimates of ensemble-averaged packing factors 
(<•>) estimated for a cubic cloud having cyclic and open horizontal 
boundary conditions (bottom and top curves, respectively) as a 
function of codimension (C) using DA(3, 6) radiative transfer. Space- 
and ensemble-averaged optical thickness is maintained at 50; cell lC optical thickness is thus 50/32 - . See (16), which determines cell 
transfer coefficients (via standard Monte Carlo simulation for 
Dermeinjian's C1 drop size distribution at 0.45 p.m under normal 
incidence). 
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is seen to increase with the sparseness of the medium as 
measured by C. When the cyclical horizontal boundary 
conditions are removed, <•> increases considerably as expected, 
since the albedo is reduced due to side "leakage". 

Using an analysis technique called "functional box-counting" 
[Lovejoy et al., 1987], Gabriel et al. [1986] give numerical 
evidence that the radiation fields associated with [3 model clouds 
are multifractal in spite of the monodimensional nature of the 
cloud field. This means that the fractal dimensions for the 
increasingly intense regions of the albedo field are not constant, 
but decrease. This is in accord with satellite data analyzed by 
Gabriel et al. [1988] and Lovejoy and Schertzer [1990b]. 

5. APPLICATION TO SELE•D ATMOS?HEmC RADIATION 
PROBLEMS 

We have argued that radiative transfer in clouds depends 
critically on the assumptions that are made about the variability, 
or lack of variability, of the optical medium. To date, most 
radiative transfer calculations are made with the totally ad hoc 
assumption that clouds are plane-parallel. The limitation to this 
special (and unrealistic) case considerably restricts meteorological 
and climatological applications of radiative transfer. Conversely, 
systematic studies of radiative transfer in systems with strong 
horizontal and vertical variability will help to overcome 
outstanding difficulties. Areas where our findings are likely to 
be particularly relevant are discussed briefly below. Other areas 
not singled out for discussion, but nevertheless of potential 
interest, include rainfall and cloud estimation algorithms, 
radiative transfer theory, stochastic cloud modelling and nuclear 
winter studies. 

5.1. The Cloud Albedo Paradox 

We have seen that virtually any scaling family of clouds will be 
expected to have different thick cloud scaling exponents than the 
plane-parallel family, with the latter expected to yield the absolute 
maximum value. In terms of the packing factor •, this 
immediately leads to the general result •J > 0, where •J is the 
packing exponent introduced in section 3, hence 

(17) 

Although in reality, scaling will only hold over a limited range, 
cloud simulations presented in section 4 showed that • can reach 
values of order 10 for cloud decks (cyclic boundary conditions) 
characterized by fractal dimension of 2.2, using scaling regimes 
limited to a range of scales of only a factor 32. Isolated clouds 
(open boundary conditions) attain the same value at dimension 
2.7. This result has implications for the so-called "albedo 
paradox" [Wiscombe et al., 1984]. Stated simply, the paradox is 
that optical depths computed from seemingly reasonable liquid 
water profiles based on actual field measurements reach several 
hundred for only moderately thick clouds. However, in order to 
obtain consistency between the value of the planetary albedo 
=0.30, and the globally averaged cloud cover (50%),the clouds 
cannot have a mean albedo greater than =0.5 [Paltridge and Platt, 
1976], a value which for plane-parallel theory implies optical 
depths only of order 10. Conversely, when plane-parallel 
models are used to approximate the radiative properties of real 
clouds (and they usually are), optical depths exceeding 100 imply 
visible albedoes greater than 0.9, a value rarely if ever observed 
[Wiscombe et al., 1984]. Satellite observations also deduce 
smaller-than-expected optical depths [Twomey and Cocks, 
1982]. The paradox vanishes once we leave the very artificial 
special case of plane-parallel media. 

5.2. The Interpretation of Satellite Images of Clouds 

Satellite imagery is widely used to make subjective judgements 
about meteorological features on a routine basis without any 
explicit account being taken of the sub-pixel variability. The 
dangers of such homogeneous, plane-parallel type interpretations 
of satellite data were underscored in Gabriel et al. [1988]. 
Defining a "feature" as a region of a satellite radiation field 
exceeding a radiance threshold, the hypothesis that such features 
are resolution-independent was tested. Except for extremely low 
thresholds, this hypothesis could be statistically rejected with 
very high levels of confidence (at both infrared and visible 
wavelengths over both mainly cloud free and cloud covered 
images using GOES data over Montreal). In as much as many 
algorithms for exploiting satellite data involve direct use of 
satellite radiances at various thresholds, these algorithms will 
contain hidden resolution dependencies. However, not all 
characteristics are resolution dependent; the "codimension 
function" determined by these authors is an example of such a 
statistic and should be used as the basis for a resolution 
independent approach towards quantitatively exploiting such data 
sets. 

5.3. Radiation Budget and Climate Models 

The need to relate the spatial and temporal variability of cloud 
and rain liquid water fields to the associated radiation fields at a 
variety of scales arises in both estimates of radiation budgets as 
well as in climate modeling; see Ramanathan et al. [1983, 1989]. 
The solution to these problems calls for an improved theory of 
cloud-radiation interaction and, among other things, an 
understanding of how radiance and albedo vary with spatial 
resolution. According to J.P. Blancher and H. Barker (private 
communication,1989), preliminary general circulation model 
(GCM) runs using nontrivial packing exponents used to correct 
(plane-parallel) shortwave radiation packages yield better globally 
averaged planetary albedoes. 

6. FtYrURE DIRECTIONS 

6.1. Improvements in Cloud Modeling 

The chief reason for studying DA radiative transfer in the 
isotropic [3 model clouds described in the previous sections is 
simplicity. The calculations are (at least numerically) tractable, 
and the models involve a single parameter to describe 
inhomogeneity (i.e., fractal dimension). Below, we briefly 
sketch some obvious areas where realism must be added to the 
models. At least some of these improvements will be necessary 
before the models are sufficiently realistic to warrant detailed 
comparisons with measured cloud albedoes and transmission 
coefficients. 

Stratification and texture. We have already noted that real 
clouds could not be exactly self-similar; otherwise extrapolation 
from a small roundish cloud to clouds hundreds of kilometers 
long, would lead to clouds hundreds of kilometers high. 
Lovejoy and Schertzer [1985], and Schertzer and Lovejoy 
[1985b, 1987a,b] outline a complete formalism called 
"generalized scale invariance" that allows differential rotation, 
stratification, as well as more general (nonlinear) transformations 
to be incorporated into a scale-invariant framework. They also 
introduce a new kind of "elliptical dimension" (del) that 
quantitatively describes the stratification. For example, it was 
argued that del = 23/9 = 2.555... for the horizontal wind 
field. This means that rather than being completely isotropic 
(del = 3) or completely flat (del = 2), that the latter is "in 
between", i.e., characterized by a continuously scaling 
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stratification. Using new data analysis techniques and radar data, 
Lovejoy et al. [1987] estimate del = 2.22_+0.07 in the rain field, 
indicating that the latter is considerably more stratified than the 
former. It is therefore of some interest to analyze the effect of 
various degrees of stratification (del) on the radiation fields for 
both homogeneous and fractal clouds. From a modeling point of 
view, the difference between self-similar and stratified clouds is 
that the "zoom" relating small and large scales now involves 
compression (flattening) along the vertical. This is easy to 
achieve; for example, enlarge in the horizontal directions by )• 
and in the vertical direction by only )•Hz with 0 < Hz < 1. In 
this case, the volume of a (homogeneous) cloud would increase 
by only )•3•3• Hz = )•2+H z= •,del, thus thicker and thicker 
clouds become flatter and flatter, with del somewhere between 2 
and 3. 

Continuous cascades and multifractal clouds. Other limitations 
of our cloud model are that it depends on scale changing with 
discrete factors and possesses only a single fractal dimension. A 
simple way of curing the latter problem would be to use an ct 
model as discussed in section 4.1. A more physically realistic 
way which involves both continuous cascade processes and 
multiple fractal dimensions is to use the model described by 
Schertzer and Lovejoy [1987a,b]. Ultimately, we may expect 
that the "codimension function" of the optical density field 
(which specifies the entire spectrum of fractal sets needed to 
describe a field) should be related to that of the of the 
corresponding radiation field. Recall that the latter is a 
nonlinearly smoothed version of the former. The basic idea is 
that the codimension functions are the basic scale invariant 
objects; we expect the scale invariant connection between these 
two fields to be expressible in terms of these functions. 
Actually, the connection may even be simpler, since Schertzer 
and Lovejoy [1987a,b] have shown that the codimension 
functions belong to universality classes characterized by three 
parameters, i.e., they have simple "generators"; ultimately we 
seek relationships between these generators. The empirical 
determination of the functions at various wavelengths [Gabriel et 
al., 1988; Lovejoy and Schertzer, 1990], and the finding that 
they fall into universality classes predicted by continuous cascade 
processes, supports this idea. 

6.2. Improvements in Radiative Transfer Modeling 

Absorption and multiple wavelength properties. Most of the 
numerical and analytical methods used here and in parts 1 and 2 
are valid in both conservative and non-conservative scattering. 
However, we have mainly studied the conservative scattering 
case because it yields both more interesting thick cloud behavior 
(power law rather than exponential decay) and because it is a 
good approximation to visible light scattering in real clouds. 
Although the effects of absorption at a single wavelength clearly 
require more study in their own right, such studies will also 
enable the overall wavelength dependence of radiative transfer 
from fractal clouds to be determined. Modeling the wavelength 
dependence is important in both (1) the standard "inversion" 
problem where radiances from various (remotely sensed) 
wavelengths are available and cloud characteristics such as mean 
optical thicknesses are sought and (2) estimating the "broad 
band" properties in spectral regions where absorption is 
important. 

Multiple scattering in extremely variable random media 
(technical remarks). The multiple scattering source term in the 
radiative transfer equation effectively couples the radiation field's 
directional anisotropy and spatial inhomogeneity (hence 
gradients); see discussion in section 2.3 of part 1. Up until 
now, the dominant method of overcoming this difficulty has been 

to restrict our attention to plane-parallel systems, allowing the 
intensity as a function of direction to be considered in great detail 
both analytically and computationally, exactly and approximately 
[Lenoble, 1977]. Given the unrealistic nature of the geometry, 
the most attractive of these plane-parallel models are of the 
approximate/analytical kind (especially when the computational 
overload must be kept to a minimum, e.g., in a GCM radiation 
module or a sensitivity study). Meador and Weaver [1980] 
propose a selection of two-stream models for fluxes (see Sobolev 
[1956] for intensity). At the same time the exact/computational 
models such as Stamnes et al. [1989] provide convenient 
benchmarks in validation studies [e.g. King and Harshvardan, 
1986]. The only vehicle that allows spatial variability of arbitrary 
magnitude in all directions simultaneously is the computationally 
exact (but cumbersome) Monte Carlo method, exploited in 
section 2, and alternatively (and with more caution), finite 
differences, exploited in section 4. This is very unsatisfactory 
mainly because these methods give no physical insight into the 
transfer processes, the fundamental equations are only used for 
interpretation of the results. Recent progress in the modeling of 
radiative transfer through arbitrary optical density fields while 
potentially maintaining the full angular complexity has been made 
by Stephens [1986, 1988a,b] using horizontal Fourier 
transforms. Because of the spatial anisotropy imposed by the 
specific (illumination) boundary conditions of the multiple 
scattering problem, vertical variability is best treated in real 
(possibly, Laplace) space. This results in beam and (Fourier) 
mode coupling in a formally plane-parallel problem and, in 
practice, this approach (coupled with invariant imbedding ideas) 
allows semi-analytical treatment of media with horizontal 
variability only. 

We believe that the results obtained here in DA(d, n) systems 
show that the past emphasis on modeling angularly complex but 
spatially simple systems has been misplaced. Indeed, the 
powerful DA(d, 2d) similarity relations of part 1 (which seem to 
hold approximately in continuous angle systems) and the 
existence of universal phase function independent exponents 
points to the secondary role that the angular part of the problem 
appears to play with respect to the spatial part. The results 
obtained here therefore incite us to concentrate our attention on 
developing much more realistic models for the cloud fields. 

However, it must be realized that the associated (even DA) 
radiative transfer problem will not be easily solved. While 
exploring the complications in the (two-stream) modeling of 
simply layered media analytically, Flateau and Stephens [ 1988] 
indicate the difficulty of modeling simultaneously horizontal and 
vertical inhomogeneity. Upon (vertical) integration, we are 
required to combine nonlinearly a large number of (large) random 
matrices which are infinitesmal or differ infinitesimally from 
unity. Any kind of vertical variability that cannot be absorbed 
into the definition of (average) optical depth, e.g., presence of 
layers where scattering is non-conservative (or, more 
interestingly, altitude dependent horizontal structure), means 
non-commutation of these matrices. In particular this implies that 
even a simple product cannot be done in general by 
exponentiafing a sum of generators. In the case of multifractal 
cloud (optical density) fields, these matrices will furthermore be 
correlated over long distances like the optical density field itself. 
The Markov approach applied by Vanderhaegen [1986] to 
one-dimensional absorbing/emitting media may be of use for 
scattering media too, possibly along the lines suggested by 
•Ponnholm et al. [ 1980]. At any rate, the DA simplification (used 
in conjunction with universality classification) will be welcome 
and the successes of scaling ideas in nonlinear dynamical 
systems theory, turbulence modeling and statistical physics 
encourage us to exploit them systematically in the context of 
radiative transfer. 
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7. CONCLUSIONS 

The major objective of this series of papers was to study 
radiative transfer in extremely inhomogeneous media. Scaling 
(fractal) cloud models were used both because these are more 
meteorologically realistic than their prevailing plane-parallel 
counterparts, and also because they form a simple class amenable 
to theoretical analysis. To make the problem tractable, we 
studied systems involving discrete angle phase functions, in 
which scattering only occurs in a finite number of directions. In 
these systems, the intensity field decouples into an infinite 
number of mutually independent families. Each family, which 
involves only interaction between a small number of angles, can 
then be studied separately. As usual, the equations can be solved 
on grids or by using Monte Carlo techniques. They can also be 
treated approximately using renomalization methods. 

In this final part, we numerically investigated the scaling 
properties of the radiation fields associated with very simple 
homogeneous and fractal clouds, the latter generated by turbulent 
cascade models in which elementary cells end up either empty or 
full. To quantify the nonlinear effect of inhomogeneity, we 
defined a packing factor as the ratio of (space-averaged) optical 
thicknesses of fractal clouds to plane-parallel clouds. This 
packing of more liquid water into a cloud than is allowed by 
plane-parallel models is not exclusive to fractal clouds, leakage 
through sides is enough. Using 323 grids, we showed that 
substantial deviations from plane-parallel behavior can occur 
even in systems involving scaling only over the limited range of a 
factor 32 in scale; we easily obtain packing factors of order 10, 
which is sufficient to explain the so-called "albedo paradox". 

Although we discussed applications of these results to remote 
sensing and climate modeling, perhaps a more significant result 
will be a reappraisal of the relative importance given to the spatial 
and angular parts of the radiative transfer problem. Our results 
clearly indicate that if the spatial variability is not correctly 
modeled, arbitrarily large errors can occur. Conversely, even 
crude modeling of the angular aspect may be sufficient for many 
applications. Rather than developing sophisticated methods to 
account for the details of the angular part of radiative transfer in 
simplistic plane-parallel cloud models, we should be adding 
realism to the spatial distribution of cloud liquid water and 
concentrating on spatial and statistical aspects of the associated 
radiation field. 

APPENDIX: SPATIALLY D•S•D EQUATIONS OF DA 
RADIATNE TRANS• AND THEIR NUMEmCAL SOLUTION BY 

ITERATION 

In section 4 of this paper, much use is made of the equations of 
DA(3, 6) radiative transfer on a cubic lattice (see parts 1 and 2 
for other possibilities): 

l•m) = • rrik(m) Ik(m-k) (A1) 
k 

where rrik(tn) is the transfer matrix at lattice point tn. We have 
here, 

TRSSSS 

sRTSSSS STRSS 

c•= i S R T S S (A2) SSSTR 
SSSRT 

in the (space-filling) DA(3, 6) system where the 6 k vectors are 
1 -1 0 0 0 0 

T is the transmittance of a (filled) cell, R is its reflectance, and S 
represents diffuse reflection through a side (not necessarily after 
single-scattering only) and R+T+4S = 1 for conservative 
scattering; rr is, of course, the identity matrix at every empty cell 
in a fractal medium. The corresponding boundary conditions are 
unit "downward" intensity along horizontal boundary assigned to 
the top of the (grid describing the) cloud and zero "inward" 
intensity at all other boundaries, although intensity can be 
"recycled" from one vertical boundary back into its opposite, 
thus making the medium periodic. 

Many methods of solution are possible, and we did not make 
an exhaustive study of the most efficient algorithms. The 
simplest method involves a simple iteration of (A1); it is known 
as Gauss-Seiders and was that used by Mosher [1979] in the 
context of DA radiative transfer. Starting with an initial (guess) 
intensity field l(O)•m), we obtain the (n+ 1)th iteration from the 
nth using 

l(n+l)i(m) = • rrik(m) l(n)k(m-k) (A4) 
k 

The initial guesses used here were simply unit radiation (down) 
on the top and zero (in all directions) elsewhere. Iterating this 
equation is a numerically stable method of solution, since all the 
elements are positive, and the sum of any row (or column) of rr 
is < 1 (alternatively, Appendix A of part 1 points out that the 
absolute eigenvalues of rr are all < 1). Another related method 
that works well here is over-relaxed iteration; however, care 
must be taken in choosing the relaxation parameter. 
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